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ABSTRACT: A group is said to be locally nilpotent if every finitely generated subgroup of the group is 
nilpotent. In this paper we show that if the group G=AB=AK=BK be the product of three locally nilpotent 
subgroups A,B, and K, where K is normal in G. And G has finite abelian section rank, then G is locally 
nilpotent and hence hypercentral. 
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INTRODUCTION 
 
 In 1968 N.F. Sesekin (see [19]) proved that a product of two abelian subgroups with minimal condition satisfies 
also the minimal condition . He and Amberg independently obtained a similar result for the maximal condition 
around 1972. Moreover, a little later the proved that a soluble product of two  nilpotent subgroups with maximal 
condition likewise satisfies the maximal condition, and its Fitting subgroups inherits the factorization. Subsequently 
in his Habilitationsschrift (1973) he started a more systematic investigation of the following general question. Given 

a (soluble) product G of two subgroups A and B satisfying a certain finiteness condition x , when does G have the 

same finiteness condition x ?(see [20]) 
 For almost all finiteness conditions this question has meanwhile been solved. Roughly speaking, the answer is 
'yes' for soluble (and even for soluble-by-finite) groups. This combines theorems of B. Amberg (see [1], [2],[3],[4] 
and [6]) , N.S. Chernikov (see [5]), S. Franciosi, F. de Giovanni (see [3],[6]), O.H.Kegel (see [8]), J.C.Lennox (see 
[12]) , D.J.S. Robinson(see [9] and [12]), J.E. Roseblade(see [13]), Y.P.Sysak(see [19] and[20]), J.S. Wilson(see 
[23]), and D.I.Zaitsev(see [11] and [18]). 
 Now, in this paper, we study the locally nilpotent subgroups G and its relations, and the end we prove that if 
the group G=AB=AK=BK be the product of three locally nilpotent subgroups A,B, and K, where K is normal in G. 
And G has finite abelian section rank, then G is locally nilpotent and hence hypercentral. 
 
2. Priliminaries: ( elementary properties and theorems.) 
In this chapter we introduce the elementary properties, Lemma and theorems.  

2.1. Lemma: Let the finite group G=AB be the product of two subgroups A and B. If A,B, and G are group,-D  for 

a set   of primes, then there exist Hall  -subgroups A0 of A and B0 of B such that A0B0 is a Hall                         
 -subgroups of G.  

Proof:  Let A1, B1, and G1 be Hall  -subgroups of A, B, and G, respectively. Since G is a group,-D there exist 

elements x and y such that 
y
1

x
1 B and A

 are both contained in G1. It follows from Lemma 2.4 that 
zx A A 

 and  
zy B B 
for some z in G. Thus 

-1xz
10 A A 

and 

-1yz
10 B B 

 are Hall  -subgroups of A and B, respectively, which are 

both contained in 

-1yz
10 G G 

. Clearly the order of 00 BA 
 is bounded by the maximum -divisor n of the order of 

BA  since 
,

|B  A|

|B| . |A|
|G|




It follows that 
.|BA|

|B  A|

|B| . |A|

n

|B| . |A|
|G| 00

00

0000
0 

  Therefore A0B0=G0 is a Hall   -
subgroup of G. 
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2.2.Corollary: Let the finite group G=AB be the product of two subgroups A and B .Then for each prime p there 
exist Sylow p-subgroups A0 of A and B0 of B such that A0B0 is a Sylow p-subgroup of G.  
 
Proof: See [5] 
 
2. 8. Corollary : Let the finite group G=AB=AK=BK be the product of three nilpotent subgroups, A,B, and K, where 
K is normal in G. Then G is nilpotent .  
 
Proof: See( [4], corollary 1.3.5) 

2. 4.Lemma: Let D be a tensorial class of G-modules. Then the class DP   of G-modules  having an ascending  
series of submodules  whose factors belong to D is also tensorial.  

Proof: Let A and B two G-models in the class DP , and consider ascending series of submodules 

AA...AA0 10    and  BB..BB0 r10   with factors in D. Let T denote the tensor product 

B,A t
and for each ordinal  T let ,

 be  the subgroup of T generated by all b,a  where a is in 

A
, b is in  and   . Clearly T

 is a G-submodule  of T, and we have the following ascending series of 

submodules 
 .(6.3) T T...TTT0 rb210   Let  be an ordinal such that  1TT   . Then there exist 

ordinals b  and   such that 1.1)(1)(    The map 
,Tba)Bb,A(a   
 where a is 

in 1A  and b is in 1B  , is well defined and bilinear, and hence induces a   G-homomophism from 

)B/B()A/(A 1Z1   
 into  T/T 1 . It follows that there exists a G-epimorphism  

.T/T)B/(B)A/(A 11Z1
11)(1)(








 

Therefore the series (6.3) can be refined to an ascending series of submodules whose factors are G-homomorphic 

images of certain tensor products 
)B/(B)A/(A 1Z1   
. Hence each G-homomorphic image of T is in the 

class DP . The lemma is proved.  
 
2.5. Difinition(See [15]): Recall that the Baer radical of a group G is the subgroup generated by all its abelian 
subnormal subgroups. In particular the Baer radical is locally nilpotent. A group is called a Baer radical.  
 
2.6.Lemma (See 9): Let the group G=AB=AK=BK be the product of three nilpotent subgroups A,B, and K, where K 
is normal in G, and assume that the Baer radical of G is nilpotent. If there exists a normal subgroup N of G such 
that the factorizer X(N) of N in G=AB and the factor group G/N are nilpotent, the G is nilpotent.  
 
Proof:  Since G/N is nilpotent, the factorizer X(N) is subnormal in G. Therefore X(N)lies in the Baer radical L of G. 
Clearly G=AK=AL, so that 

LLA].. . ,A,BN,A [G].. . ,G,BN,A [
rr





 

for a sufficiently large integer r. Thus L/LBN)(A  is contained in some term with finite ordinal type of the upper 

central series of LG/ . Of course, a similar statement is true for L/LAN)(B  ,and hence L/LN  is contained in 

some term with finite ordinal type of the upper central series of LG/ . Consequwntly LG/ is nilpotent. By 
hypothesis L is nilpotent and so by Hall's theorem G is also nilpotent (See [15]).  
 
2.7. Difinition: A group G is called minimax if it has a series of finite length whose factors either satisfy  the 
minimal or the maximal condition.  
 
2.8. Theorem: Let the group G=AB=AK=BK be the product of three nilpotent subgroups A, B, and K, where K is 
normal in G. If K is minimax, then G is nilpotent.  
 
Proof: Assume that the theorem is false, and among the counter-examples  with K of minimal minimax rank 
choose a group G for which the sum of the nilpotency classes of A and B is also minimal. By Hall's theorem we 

B
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may suppose that K it abelian (See [15], Part 1, Theorem 2.27). If G is finite-by-nilpotent, then |G:Zn(G)| is finite for 
some non-negative integer n (See [15], Part 1,Theorem 4.25). The finite factor group G/Zn(G) is nilpotent by 
corollary 2.3, and so G is also nilpotent. This contradiction shows that G is not finite-by-nilpotent.  
 Assume first that K is periodic, so that it is a Chernikov group. Hence K contains a finite G-invariant subgroup 
E such that K/E is radicable. Since G/E is not nilpotent, we may suppose that K is radicable. Let H be an infinite G-
invariant subgroup of K. If H is properly contained in K, the factor group G/H and the factorizer X(H) of H in G are 
nilpotent. By Lemma 2.6(ii) the Baer radical of G is nilpotent, so that G is nilpotent by Lemma 2.5. This 

contradiction  shows that every proper G-invariant subgroup of K is finite. Clearly the normal subgroups  KA  and 

KB  of G are properly contained in K, so that 
K)(B K)(AC 

is a finite normal subgroup of G. Thus G/C is 

not nilpotent, and so we may suppose that 1.KBKA    By Lemma 1.1.8 of [4] the normal subgroup [K,a] 
of G is properly contained in K, for every a in Z(A). Since K is radicable, this implies that [K,a]=1. Therefore Z(A) is 
contained in Z(G), and hence G/Z(G) is nilpotent. This contradiction shows that K cannot be periodic.  
 Let T be the subgroup of all elements of finite order of K. It follows from the first part of the proof that the 
factorizer X(T) of T in G=AB is nilpotent. By Lemma 2.6(ii) the Baer radical of G is nilpotent, so that G/T is not 
nilpotent by Lemma 2.5. Hence we may suppose that K is torsion-free. For every prime p the factor group K/Kp is 

finite, so that G/Kp is nilpotent. It follows that [K,G 


r

,,
G] is contained in Kp, where r is the Prüfer rank of K. Since 

K is a torsion-free abelian minimax group, by Lemma 2.32 we have  

1.K p

p


 Consequently [K,G 


r

,,
G]=1. 

Hence G is nilpotent, and this last contradiction completes the proof of the theorem. 
 
3. Main Theorem: In this chapter we prove the main theorem.  
 
3.1. Main Theorem:  Let the group G=AB=AK=BK be the product of three locally nilpotent subgroups A,B, and K, 
where K is normal in G. If G has finite abelian section rank, then G is locally nilpotent and hence hypercentral. 
 
Proof: Assume that the theorem is false. Among the counterexamples with minimal torsion-free rank, consider 
those for which the subgroup T of all elements of finite order of K is a p-group, for some prime p. Now choose a  
Counterexample G such that the finite residual J of T has minimal Prüfer rank.  
 Suppose first that K it nilpotent. Then we may assume that K is abelian by Theorem 2.4(i). As the hypercentre 

factor grorup 
(G)ZG/

 is not locally nilpotent, without loss of generality Z(G)=1. The intersection KA  lies in the 

hypercentre of A, and so is also contained in 
(G)Z

. Thus 1KA   and similarly 1KB  . 

 Write G/T.G  Since A and B  are hypercentral, the centralizers 
)K(CA and 

)K(CB are contained in the 

hypercentre 
)G(Z
of G . As 

)G(Z)/G(ZA
 and 

)G(Z)/G(ZB
 are homomorphic images of locally nilpotent 

groups of automorphisms of tha torsion-free abelian group of finite Prüfer rank K , they are nilpotent (See [15], 

Part 2, Corollary 2 to Theorem 6.32) If 
)G(Z
is periodic, then 

)G(ZK 
=1. Thus 

)G(Z/G
 is nilpotent by Theorem 

6.3.6 of [4], so that G  is hypercentral. If 
)G(Z
is not periodic, it follow by induction that 

)G(Z/G
is hypercentral, so 

that G  is hypercentral also in this case . The proof can now be completed as that of Theorem 2.8.  
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